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Abstract 

 
A new method for the estimation of properties of pure organic compounds is presented. 

Estimation is performed at three levels. The primary level uses contributions from 

simple groups that allow describing a wide variety of organic compounds while the 

higher levels involves polyfunctional and structural groups that provide more 

information about molecular fragments whose description through first-order groups is 

not possible. The presented method allows estimations of the following properties: 

normal boiling point, critical temperature, critical pressure, critical volume, standard 

enthalpy of formation, standard enthalpy of vaporization, standard Gibbs energy, 

normal melting point and standard enthalpy of fusion. The group contribution tables 

have been developed from regression using a data set of more than 2000 compounds 

ranging from C=3 to C=60, including large and complex polycyclic compounds. 

Compared to the currently used group-contribution methods, the new method makes 

significant improvements both in accuracy and applicability. 
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Introduction 

 

The basis for the design and simulation of many chemical processing units is a set of 

physical and thermodynamic properties of compounds in the process that undergo some 

form of transformation. It is not always possible, however, to find experimental values 

of properties for the compounds of interest in the literature. Since it is not practical 

either to measure them as the need arises, estimation methods are generally employed in 

this and other similar situations.  

 

For the estimation of properties of pure compounds, group-contribution methods, 

Joback and Reid [1], Lydersen [2], Ambrose [3], Klincewicz and Reid [4], Lyman et al. 

[5], Horvath [6], have been widely used. In these methods, the property of a compound 

is a function of structurally dependent parameters, which are determined by summing 

the number frequency of each group occurring in the molecule times its contribution. 

These methods provide the advantage of quick estimates without requiring substantial 

computational resources. Many of these methods are, however, of questionable 

accuracy, unable to distinguish among isomers and have limited applicability due to the 

oversimplification of the molecular structure representation as a result of the use of a 

simple group-contribution approach and relatively small data set used for estimation of 

group contributions. 

 

To overcome these limitations, several attempts have been reported in the literature. 

Constantinou et al. [7, 8] have proposed a quite complex estimation technique, which is 

based on conjugate forms (alternative formal arrangements of valence electrons). This 
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technique provides accurate estimations of several properties of pure compounds and 

allows capturing the differences among isomers. However, the generation of conjugate 

forms is a nontrivial issue and requires a symbolic computing environment, Prickett et 

al. [9]. A less complex method has been proposed by Constantinou and Gani [10], 

which performs the estimation at two levels: the basic level uses contributions from 

first-order simple groups, while the second level uses a small set of second-order groups 

having the first-order groups as building blocks. The role of the second-order groups is 

to consider, in some extent, the proximity effects and to distinguish among isomers. 

Marrero-Morejón and Pardillo-Fontdevila [11] proposed another technique that 

considers the contributions of interactions between bonding groups instead of the 

contributions of simple groups, which allows the distinction of a large number of 

isomers. 

 

Despite the advantages of above-mentioned methods, however, their ranges of 

applicability are still quite restricted. Properties of large, complex and polyfunctional 

substances, of interest in biochemical and environmental studies, cannot be accurately 

estimated by using the current available methods. Due to the relatively small data sets 

used in the development of these methods, which usually includes just a few hundred of 

relatively simple compounds, the predictive capability usually breaks down when 

dealing with large, polycyclic or polyfunctional molecules. Also, most of the existing 

group-contribution techniques do not include suitable groups for representing complex 

molecules such as the ones of biochemical or environmental importance. Motivated by 

these drawbacks, our efforts have been focused on developing a new group-contribution 
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method that allows more accurate and reliable estimations of a wide range of chemical 

substances including large and complex compounds. 

 

In our method, the estimation is performed at three levels. The basic level has a large set 

of simple groups that allow describing a wide variety of organic compounds. However, 

these groups capture only partially the proximity effects and are unable to distinguish 

among isomers. For this reason, the first level of estimation is intended to deal with 

simple and monofunctional compounds. The second level involves groups that permit a 

better description of proximity effects and differentiation among isomers. The second 

level of estimation is consequently intended to deal with polyfunctional, polar or non-

polar, compounds of medium size, C=3 to C=6, and aromatic or cycloaliphatic 

compounds with only one ring and several substituents. The third level has groups that 

provide more structural information about molecular fragments of compounds whose 

description is insufficient through the first and second level’s groups. The third level of 

estimation allows estimation of complex heterocyclic and large (C=7 to C=60) 

polyfunctional acyclic compounds. The ultimate objective of the proposed multi-level 

scheme is to enhance the accuracy, reliability and the range of application for a number 

of important pure component properties. 

 

Development of the New Method 

 

In the new method, the molecular structure of a compound is considered to be a 

collection of three types of groups: first-order groups, second-order groups and third-
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order groups. The representation of a given compound through these groups is based on 

the following set of groups. 

 

1. In the first level, groups describing the entire molecule must be selected. For 

example, CH3COCH2COCH(CH3)CH3 is described in the following way: (1) 

CH3CO, (1) CH2CO, (2) CH3, (1) CH2. In the case of aromatic substituents, groups 

of type aC-R must be chosen. For example, acetophenone is described by (1) aC-

CO, (5) aCH and (1) CH3. The same molecular fragment can not be represented by 

more than one group. For example, trimethylurea is represented by (1) NHCON, (3) 

CH3. To use groups CH3NH or CH3N would be wrong because the nitrogen atoms 

would be covered more than one time. 

  

2. In the second and third levels, the entire molecule does not need to be described by 

groups and the same molecular portion can be covered by more than one group. For 

example, cyclohexanol has only CHcyc-OH as a second-order group and 

cyclohexylmethacrylate is represented by the second-order groups CHcyc-OOC, 

CHn=CHm-COO and CH3-CHn=CHm. Contrary to the case of first-order level, 

there can be molecules that do not need any second-order or third-order groups (eg. 

acetophenone). There can be compounds that do not need any second-order group 

but need third-order groups such as for diphenyl sulfide in where a third-order group 

aC−S−aC is needed. 

 

The property-estimation model has the form of the following equation. 
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In Eq. (1), Ci is the contribution of the first-order group of type-i that occurs Ni times, Dj 

is the contribution of the second-order group of type-j that occurs Mj times and Ek is the 

contribution of the third-order group of type-k that has Ok occurrences in a compound. 

In the first level of estimation, the constants w and z are assigned zero values because 

only first-order groups are employed. In the second level, the constants w and z are 

assigned unity and zero values respectively because only first and second-order groups 

are involved while in the third level, both w and z are set to unity values. The left-hand 

side of Eq. (1) is a simple function f(X) of the target property X. The selection of this 

function has been based on the following criteria: 

 

1. The function has to achieve additivity in the contributions Ci, Dj and Ok. 

2. It has to exhibit the best possible fit of the experimental data. 

3. It should provide a good extrapolating capability and therefore a wide range of 

applicability. 

 

According to these criteria, the selected functions are the same as used by Constantinou 

and Gani [10]. The target properties as well as their corresponding estimation functions 

are listed in Table 1. The symbols Tm1i, Tb1i, Tc1i, Pc1i, Vc1i, Gf1i, Hf1i, Hv1i, Hfus1i 

represent the contributions (Ci) of the first-order groups for the correspondig properties. 

Similarly, Tm2j, Tb2j, Tc2j, Pc2j, Vc2j, Gf2j, Hf2j, Hv2j, Hfus2j and Tm3k, Tb3k, Tc3k, 

Pc3k, Vc3k, Gf3k, Hf3k, Hfus3k represent the contributions (Dj) and (Ok.) of the second 

and third-order groups, respectively. The Tm0, Tb0, Tc0, Pc1, Pc2, Vc0, Gf0, Hf0, Hv0, 
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Hfus0 are additional adjustable parameters of the estimation models or universal 

constants. 

 

The determination of the adjustable parameters of the models, that is, the contributions 

Ci, Dj and Ok, has been divided into a three-step regression procedure: 

 

1. Regression is carried out to determine the contributions (Ci) of the first-order groups 

and the universal constants of the models while w and z are set to zero. 

2. Then, w is set to unity, z is set to zero and another regression is performed using the 

Cis and universal constants calculated in the previous step to determine the 

contributions (Dj) of the second-order groups. 

3. Finally, both w and z are assigned to unity and, using the universal constants of the 

models, Cis and Djs obtained as results of the previous steps, the contributions (Ok.) of 

the third-order groups are determined. 

 

This stepped regression scheme ensures the independence among contributions of first, 

second and third order. Besides, the contributions of the higher levels act as corrections 

to the approximations of the lower levels. The total of the contributions Ci, Dj and Ok for 

the nine properties listed earlier can be obtained from the authors. The universal 

constants determined in the first step of the regression scheme are listed in Table 2. The 

optimization algorithm used for the data fitting was the Levenberg-Marquardt technique 

and the objective function was to minimize the sum of squares of the differences 

between experimental and estimated values of the target properties. The experimental 

data used in regression has been obtained from a comprehensive data bank of property 
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values developed at CAPEC-DTU [12] through a systematic search of several data 

sources. Property values have been included in this collection after a rigorous analysis 

of their reliability.  

 

Results and Discussion 

 

Table 3 presents for each property the standard deviation, the average absolute error and 

the average relative error for the first, second and third approximations. The number of 

experimental values used in the first regression step is also given. The statistics offered 

for the second and third approximations encompass all the data points, even those 

corresponding to compounds in which no second order or third order groups occur (and 

consequently not used in the second and third regression steps). Therefore, the average 

deviations given for the third approximation characterize the global results of the three 

subsequent approximations. Furthermore, due to the low number of available 

experimental values of enthalpies of vaporization at 298 K for complex and heterocyclic 

compounds, the contributions of third-order groups to this property have not been 

considered in this paper. A comparison of the average deviations obtained as results of 

the second and third regression steps is shown in Table 4, which does include the actual 

number of data points used in each step, that is, the number of compounds in which 

second and third order groups occur. For each set of compounds, the average deviations 

corresponding to both the current and previous step are presented in order to illustrate 

the improvement in accuracy achieved in each step. 

 

The reliability of the estimation equations obtained from the regression steps has been 

tested for each property by performing a least-square analysis in which a randomly 
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conformed subset of the N experimental data points has been excluded from the full data 

set. Then, the mean-square residual J defined as follows, 

( )
N

YX
J ii∑ −

=
2

         (2) 

was calculated. In Eq. 2, N is the number of data points excluded from the full data set, 

Xi is the property value of the compound i estimated by the full regression, and Yi is the 

property value of the same compound estimated by the partial regression. For all the 

properties, the residuals are smaller than the estimation errors reported in Table 3, 

confirming the reliability of the method.  

 

A fair comparison with other existing group-contribution methods is impossible since 

no other method exhibit the wide-ranging applicability of the proposed method. 

Moreover, the new method is able to deal with classes of compounds that cannot be 

handled by other widely used methods. The reason is that, compared to other methods, a 

significantly larger data set has been used in the development of the new method as well 

as a larger and comprehensive set of groups. However, in order to make a quite 

acceptable comparison of the proposed method with another classical group-

contribution method, we have calculated the contributions of the groups used by Joback 

and Reid [1] and recalculated our group contributions using the estimation models 

reported in Table 1 and a common set of compounds that can be described by both 

group schemes. A comparison between the results obtained from both methods, the 

modified Joback’s and the proposed one after the third approximation, is presented in 

Table 5. Clearly, the new method exhibits a much better accuracy. 
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Conclusion 

 

The application of three different sets of functional groups, one for a first-order 

approximation and two successive ones for refining the estimations for complex, large 

and heterocyclic compounds has led to a new group contribution method for the 

estimation of important physical and thermodynamic properties. Compared to other 

currently used estimation methods, the proposed method exhibits an improved accuracy 

and a considerably wider range of applicability to deal with chemical, biochemical and 

environmental-related compounds. Even for lower molecular weight organic 

compounds, the larger set of first-order groups provides not only a wider range of 

application but also an improved accuracy. A computer program is also being developed 

for automatic selection of groups. 
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Table 1. Selected function for each property 
 

Property (X)  Left-hand side of Eq. 1
[Function f(X)] 

Right-hand side of Eq. 1 
(Group-Contribution Terms) 

Normal Melting Point 
(Tm) 

 exp(Tm/Tm0) ΣiNiTm1i+ΣjMjTm2j+ΣkOkTm3k 

Normal Boiling Point 
(Tb) 

 exp(Tb/Tb0) ΣiNiTb1i+ΣjMjTb2j+ΣkOkTb3k 

Critical Temperature 
(Tc) 

 exp(Tc/Tc0) ΣiNiTc1i+ΣjMjTc2j+ΣkOkTc3k 

Critical Pressure (Pc)  (Pc-Pc1)-0.5-Pc2 ΣiNiPc1i+ΣjMjPc2j+ΣkOkPc3k 
Critical Volume (Vc)  Vc-Vc0 ΣiNiVc1i+ΣjMjVc2j+ΣkOkVc3k 
Standard Gibbs 
Energy at 298 K (Gf) 

 Gf-Gf0 ΣiNiGf1i+ΣjMjGf2j+ΣkOkGf3k 

Standard Enthalpy of 
Formation at 298 K 
(Hf) 

 Hf-Hf0 ΣiNiHf1i+ΣjMjHf2j+ΣkOkHf3k 

Standard Enthalpy of 
Vaporization at 298 K 
(Hv) 

 Hv-Hv0 ΣiNiHv1i+ΣjMjHv2j 

Standard Enthalpy of 
Fusion (Hfus) 

 Hfus-Hfus0 ΣiNiHfus1i+ΣjMjHfus2j+ΣkOkHfus3k
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Table 2. Values of the additional adjustable parameters 
 

Adjustable Parameter 
(Universal Constants) 

  
Value 

Tm0  147.450 K 
Tb0  222.543 K 
Tc  231.239 K 

Pc1  5.9827 bar 
Pc2  0.108998 bar-0.5 

Vc0  7.95 cm3/mol 
Gf0  -34.967 kJ/mol 
Hf0  5.549 kJ/mol 
Hv0  11.733 kJ/mol 

Hfus0  -2.806 kJ/mol 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

Table 3. Global comparison of consecutive first, second and third approximations 
 

 Data  STD AAE ARE (%) 
Property (X) Points 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Tm (K) 1547 33.87 29.52 27.67 24.90 21.41 20.22 9.3 7.9 7.6
Tb (K) 1794 11.11 8.96 8.09 7.90 6.38 5.89 1.8 1.4 1.4
Tc (K) 783 17.25 8.50 6.99 8.75 5.67 4.93 1.4 0.9 0.8

Pc (bar) 775 1.73 1.53 1.39 1.02 0.87 0.79 2.9 2.6 2.3
Vc (cc/mol) 762 13.36 11.57 10.74 9.12 7.85 7.33 2.2 1.9 1.8
Gf (kJ/mol) 679 8.37 6.85 5.90 5.35 4.12 3.70 --- --- ---
Hf (kJ/mol) 686 8.29 6.79 5.75 5.27 4.05 3.60 --- --- ---
Hv (kJ/mol) 437 2.05 1.61 --- 1.10 0.86 --- 2.7 2.3 ---

Hfus (kJ/mol) 711 4.16 3.88 3.65 2.58 2.32 2.17 18.3 16.4 15.7
 

STD = 
( )

N
XXest∑ − 2exp

 

AAE = ∑ − exp1 XXest
N

 

ARE = %100
exp

exp1
∑

−
X

XXest
N

 

where N is the number of data points, Xest is the estimated value of the property X, and 

Xexp is the experimental value of the property X 
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Table 4. Comparison of average deviations for second and third order approximations 

  2nd 3rd 
Property Data Points Data Deviations Data Deviations 

(X) (total) Points 1st 2nd  Points 1st & 2nd 3rd 
Tm 1547 960 9.7 % 7.5 %  181 10.0 % 7.1 % 
Tb 1794 1107 1.9 % 1.3 % 141 2.6 % 1.4 % 
Tc 783 412 1.6 % 0.8 % 52 1.8 % 0.5 % 
Pc 775 411 2.6 % 1.9 % 64 5.0 % 2.3 % 
Vc 762 408 2.5 % 1.9 % 62 2.7 % 1.4 % 
Gf 679 358 5.8 * 3.5 * 57 9.5 * 4.6 * 
Hf 686 353 5.6 * 3.3 * 58 9.3 * 4.0 * 
Hv 437 218 2.5 % 1.6 % ---- ---- ---- 

Hfus 711 351 19.2 % 15.5 % 99 22.9 % 17.7 % 
 

Deviations are expressed as average relative errors for all properties excepting for Gf 

and Hf, which are expressed as average absolute errors 

* kJ/mol 
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Table 5. Comparison of accuracy between a classical group-contribution scheme and the 

proposed method 

 Data STD AAE ARE (%) 
Property (X) Points JR  New JR New JR New 

Tm (K) 1103 38.87  25.34 34.90 18.76 14.6 7.5 
Tb (K) 1211 15.86  8.01 11.02 5.89 3.1 1.4 
Tc (K) 587 18.73  6.87 10.96 4.87 2.1 0.9 
Pc (bar) 573 3.71  1.36 2.45 0.74 5.6 2.2 

Vc (cc/mol) 544 18.36  10.69 14.53 7.25 2.7 1.8 
Gf (kJ/mol) 481 12.41  5.90 9.03 3.62 --- --- 
Hf (kJ/mol) 493 12.23  5.68 8.98 3.60 --- --- 
Hv (kJ/mol) 343 2.93  1.60 2.71 0.83 4.2 2.4 

Hfus (kJ/mol) 499 6.84  3.62 3.06 2.11 46.3 15.6 
 

JR = Joback and Reid [1] 

New = Proposed method 
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Appendix 1 

 

To illustrate the proposed method, we provide the estimation of the normal boiling point 
and normal melting point using six example compounds. The experimental data and 
estimations through Joback and Reid method [1] are also given. 

 

Example 1. Estimation of the normal boiling point of N-Phenyl-1,4-benzenediamine  

H2N

NH

 

(Experimental value: Tb = 627.15 K) 

First-order Groups Occurrences Contribution 
aC-NH2 1 3.8298x1 
aC-NH 1 2.9230x1 

aC 1 1.5468x1 
aCH 9 0.8365x9 

    ΣiNiTb1i = 15.8281 
Tb = 222.543ln(15.8281) = 614.62 K  
(first-order approx., error: 12.53 K) 

Second-order Groups Occurrences Contribution 
AROMRINGs1s4 1 0.1007x1 

     ΣjMjTb2j = 0.1007 
Tb = 222.543ln(15.8281+0.1007) = 616.03 K  

(second-order approx., error: 11.12 K) 
Third-order Groups Occurrences Contribution 

aC-NH-aC 1 0.5768x1 
     ΣkOkTb3k = 0.5768 

Tb = 222.543ln(15.8281+0.1007+0.5768) = 623.94 K 
(third-order approx., error: 3.21 K) 

Estimation through Joback and Reid [1]: 655.20 K 
error: -28.05 K 
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Example 2. Estimation of the normal boiling point of Pyrene 

 

(Experimental value: Tb = 677.15) 

First-order Groups Occurrences Contribution 
aC (fused with arom. ring)  6 1.7324x6 

aCH 10 0.8365x10 
     ΣiNiTb1i = 18.7593 

Tb = 222.543ln(18.7593) = 652.43 K  
(first-order approx., error: 24.72 K) 

No second-order groups are involved 
Third-order Groups Occurrences Contribution 
AROM.FUSED[3] 2 0.0402x2 
AROM.FUSED[4p] 2 0.9126x2 

     ΣkOkTb3k = 1.9056 
Tb = 222.543ln(18.7593+1.9056) = 673.96 K 

(third-order approx., error: 3.19 K) 
Estimation through Joback and Reid [1]: 651.56 K 

error: -24.41 K 
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Example 3. Estimation of the normal boiling point of 4-aminobutanol 

 

NH2

OH
 

 

(Experimental value: Tb = 478.15 K) 

First-order Groups Occurrences Contribution 
OH  1 2.5670x1 

CH2NH2 1 2.7987x1 
CH2 3 0.7141x3 

        ΣiNiTb1i = 7.508 
Tb = 222.543ln(7.508) = 448.64 K  
(first-order approx., error: 29.51 K) 

No second-order groups are involved 
Third-order Groups Occurrences Contribution 

NH2-(CHn)m-OH (m>2) 1 1.0750x1 
      ΣkOkTb3k = 1.0750 

Tb = 222.543ln(7.508+1.0750) = 478.42 K 
(third-order approx., error: -0.27 K) 

Estimation through Joback and Reid [1]: 364.31 K 
error: 113.84 K 
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Example 4. Estimation of the normal melting point of 3,3'-Methylenebis-4-

hydroxycoumarin (Dicoumarol) 

 

(Experimental value: Tm = 563.15 K) 

First-order Groups Occurrences Contrib. 
OH  2 2.7888x2 

aC (fused with non-arom. ring) 4 1.2065x4 
aCH 8 0.5860x8 

C=C (cyc) 2 0.3048x2 
CO (cyc) 2 3.2119x2 
O (cyc) 2 1.3828x2 

CH2 1 0.2515x1 
        ΣiNiTm1i = 25.1421 

Tm = 147.450ln(25.1421) = 475.46 K  
(first-order approx., error: 87.69 K) 

No second-order groups are involved 
Third-order Groups Occurrences Contrib. 
AROM.FUSED[2] 2 0.2825x2 

aC-(CHn=CHm)cyc (in fused rings) 2 0.2479x2 
aC-O (cyc) (in fused rings) 2 -0.3545x2 

(CHm=C)cyc-CHp-(C=CHn)cyc (in different rings) 1 16.8558x1 
      ΣkOkTm3k = 17.2076 

Tm = 147.450ln(25.1421+17.2076) = 552.34 K 
(third-order approx., error: 10.81 K) 

Estimation through Joback and Reid [1]: 749.28 K 
error: -186.13 K 

 
 
 
 
 
 
 
 
 
 

O
CO

OH

O
OC

HO

CH2



22 

 
Example 5. Estimation of the normal melting point of 7-Chloro-5-(2-fluorophenyl)-1,3-
dihydro-3-hydroxy-1-methyl-2H-1,4-benzodiazepin-2-one (Flutemazepan) 
 

F N
N

CO
OH

CH3

Cl

 
 (Experimental value: Tm = 436.00) 
 

First-order Groups Occurrences Contrib. 
OH  1 2.7888x1 

aC-Cl 1 1.7134x1 
aC-F 1 0.9782x1 
CH3 1 0.6953x1 
aC 1 0.9176x1 

aC (fused with non-arom. ring) 2 1.2065x2 
aCH 7 0.5860x7 

CH (cyc) 1 0.0335x1 
CO (cyc) 1 3.2119x1 
N (cyc) 1 0.6040x1 

(C=N)cyc 1 6.6382x1 
                ΣiNiTm1i = 24.0959 

Tm = 147.450ln(25.1421) = 469.19 K  
(first-order approx., error: 33.19 K) 

Second-order Groups Occurrences Contrib. 
AROMRINGs1s2 1 -0.6388x1 

Ncyc-CH3 1 -0.0383x1 
CHcyc-OH 1 1.3691x1 

                  ΣjMjTm2j = 0.6920 
Tm = 147.450ln(24.0959+0.6920) = 473.36 K  

(second-order approx., error: 37.36 K) 
Third-order Groups Occurrences Contrib. 

AROM.FUSED[2]s3 1 2.2589x1 
aC-NHn(cyc) (in fused rings) 1 3.4983x1 

aC-(C=N)cyc (in different rings) 1 -1.3060x1 
aC-(CHn=N)cyc (in fused rings) 1 -10.1007x1 

               ΣkOkTm3k = -5.6495 
Tm = 147.450ln(24.0959+0.6920-5.6495) = 435.22 K 

(third-order approx., error: 0.78 K) 
Estimation through Joback and Reid [1]: 511.51 K 

error: -75.51 K 
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Example 6. Estimation of the normal melting point of 1,9-Nonadiol 

 

OHOH
 

 

(Experimental value: Tm = 318.95 K) 

First-order Groups Occurrences Contribution 
OH  2 2.7888x2 
CH2 9 0.2515x9 

        ΣiNiTm1i = 7.8411 
Tm = 222.543ln(7.8411) = 303.66 K  
(first-order approx., error: 15.29 K) 

No second-order groups are involved 
Third-order Groups Occurrences Contribution 

HO-(CHn)m-OH (m>2) 1 0.6674x1 
      ΣkOkTm3k = 0.6674 

Tm = 222.543ln(7.8411+0.6674) = 315.70 K 
(third-order approx., error: 3.25 K) 

Estimation through Joback and Reid [1]: 312.83 K 
error: 6.12 K 
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